
7 Things That Successful Smart Cities Do

Curating M2M, IoT and the Universe of Smart Environments
As the world experiences a quantum leap in the speed and scope of digital connections, industries are gaining new and enhanced tools to boost productivity and spur innovation.
Over the next decade, existing technologies like fiber, low- to mid-band 5G networks, low-power wide-area networks (LPWANs), and Wi-Fi 6—as well as short-range connections like radio-frequency identification (RFID)—will expand their reach as networks are built out and adoption grows. At the same time, new generations of these technologies will appear with upgraded standards. In addition, new types of more revolutionary and more capital-intensive frontier connectivity like high-band 5G and low-Earth orbit (LEO) satellites will begin to come online. Together, these technological developments will unlock powerful new capabilities across industries. Near global coverage will allow the expansion of use cases even to remote areas and enable constant connectivity universally. Massive IoT advances will be enabled as new technologies allow high device densities, and mission critical services will take advantage of ultra-low latency, highly reliable, and highly secure connections.
From healthcare and manufacturing to mobility and retail, there are hundreds of promising use cases for the emerging generation of enhanced connectivity. Together, advanced and frontier connectivity could help seven sectors add a total of $2 trillion to $3 trillion in additional value to global GDP.
The original conception of the Internet of Things (IoT) was of a network of physical objects or “things” embedded with electronics, software, sensors, and connectivity to enable objects to exchange data with a centralized operator and/or other connected devices.
Smart grids, smart homes and smart cities were all representations of what an IoT could be/do.
The IoT equivalent of the human brain is the cloud-based analysis of the data rising up from sensors to generate insights and decide on actions. Much of the benefit of the Internet of Things lies in our ability to leverage the (useful) data we collect with it. This is the “analytics of things,” and this area has, in many ways, received the least attention of all. This is unfortunate, because it is analytics that can add the most business, lifestyle, and health value to the IoT. It has been said that “data without meaning, without soul, will not move people to change their behaviors over the long term.”1 Value-added analytics are what many early adopters of activity trackers believe has been most missing and disappointing.
Sensor data have some unique attributes, so related analytics are unique as well. The data are typically continuous and fast-flowing, so there must be processes for continuous analysis of the data. Technologies such as “complex event processing” and “event stream processing” bring the data to the analysis capability, where they are processed in real time, and then results are sent back where they are needed. Because there is so much data, a major focus of the analytics of things is anomaly detection. Is something broken in our operational network? Does a bike ride appear to be in the middle of a corn field? Are you about to end the day without reaching 10,000 steps? Analytics can identify situations that require some form of human intervention.
Some other typical analytical applications for the IoT include the following:
The analytics of things is often a precursor to cognitive action—taking action based on the results of analyzed sensor data. Comparative usage statistics, for example, might motivate an energy consumer to cut back on usage, while smart thermostats can monitor and optimize the household environment. Predictive asset maintenance suggests the best time to service machinery, which is usually much more efficient than servicing at predetermined intervals. A municipal government could analyze traffic data sensors in roads and other sources to determine where to add lanes and how to optimize stoplight timing and other drivers of traffic flow.
Machine learning has experienced a boost in popularity among industrial companies thanks to the hype surrounding the Internet of Things (IoT). Many companies are already designating IoT as a strategically significant area, while others have kicked off pilot projects to map the potential of IoT in business operations.
As a result, nearly every IT vendor is suddenly announcing IoT platforms and consulting services.
But achieving financial benefits through IoT is not easy. The lack of concrete objectives is disconcerting. The advancement of digitization and IoT places new prerequisites on both buyers and sellers. Many businesses have failed to clearly determine what areas will change with the implementation of an IoT strategy.
In other words, clearly defined, concrete intermediary objectives are missing. For example, industrial companies produce a massive amount of data on a daily basis. However, by and large, companies fail to systematically collect, store, analyze and use such data to improve process efficiency or meet other goals.
Furthermore, not many vendors are able to establish, in concrete terms, to the client how to prudently create positive impact on business operations with IoT solutions. Simply the promise of a cloud-based IoT platform is not enough.
Cisco has recently filed a U.S. patent application for an invention that it describes as a, “Block Chain Based IoT [Internet of Things] Device Identity Verification and Anomaly Detection.”
The concept has to do with enabling a blockchain-based system that could record changes to the conditions affecting and captured by sensors (i.e., smart objects) in a network and instrumentalize network relationships and the data that the network generates in order to exercise control over those nodes.
The application lists “the smart grid, smart cities, and building and industrial automation” among the types of Low-Power and Lossy Networks (LLNs) that might operate more efficiently with the integration of the invention. The smart objects/sensors that could, at least partially, comprise these networks include “lights, appliances, vehicles, HVAC (heating, ventilating, and air-conditioning), windows and window shades and blinds, doors, [and] locks,” as well as actuators – automated devices that can, for instance, start an engine.