The Future of Connectivity – McKinsey

As the world experiences a quantum leap in the speed and scope of digital connections, industries are gaining new and enhanced tools to boost productivity and spur innovation.

Over the next decade, existing technologies like fiber, low- to mid-band 5G networks, low-power wide-area networks (LPWANs), and Wi-Fi 6—as well as short-range connections like radio-frequency identification (RFID)—will expand their reach as networks are built out and adoption grows. At the same time, new generations of these technologies will appear with upgraded standards. In addition, new types of more revolutionary and more capital-intensive frontier connectivity like high-band 5G and low-Earth orbit (LEO) satellites will begin to come online. Together, these technological developments will unlock powerful new capabilities across industries. Near global coverage will allow the expansion of use cases even to remote areas and enable constant connectivity universally. Massive IoT advances will be enabled as new technologies allow high device densities, and mission critical services will take advantage of ultra-low latency, highly reliable, and highly secure connections.

From healthcare and manufacturing to mobility and retail, there are hundreds of promising use cases for the emerging generation of enhanced connectivity. Together, advanced and frontier connectivity could help seven sectors add a total of $2 trillion to $3 trillion in additional value to global GDP.

Analytics and the Internet of Things

The original conception of the Internet of Things (IoT) was of a network of physical objects or “things” embedded with electronics, software, sensors, and connectivity to enable objects to exchange data with a centralized operator and/or other connected devices.

Smart grids, smart homes and smart cities were all representations of what an IoT could be/do.

The IoT equivalent of the human brain is the cloud-based analysis of the data rising up from sensors to generate insights and decide on actions. Much of the benefit of the Internet of Things lies in our ability to leverage the (useful) data we collect with it. This is the “analytics of things,” and this area has, in many ways, received the least attention of all. This is unfortunate, because it is analytics that can add the most business, lifestyle, and health value to the IoT. It has been said that “data without meaning, without soul, will not move people to change their behaviors over the long term.”1 Value-added analytics are what many early adopters of activity trackers believe has been most missing and disappointing.

Sensor data have some unique attributes, so related analytics are unique as well. The data are typically continuous and fast-flowing, so there must be processes for continuous analysis of the data. Technologies such as “complex event processing” and “event stream processing” bring the data to the analysis capability, where they are processed in real time, and then results are sent back where they are needed. Because there is so much data, a major focus of the analytics of things is anomaly detection. Is something broken in our operational network? Does a bike ride appear to be in the middle of a corn field? Are you about to end the day without reaching 10,000 steps? Analytics can identify situations that require some form of human intervention.

Some other typical analytical applications for the IoT include the following:

  • Comparative usage—how your consumption of a resource (for example, calories) compares with others in similar situations
  • Understanding patterns and reasons for variation—developing statistical models that explain variation
  • Predictive asset maintenance—using sensor data to detect potential problems in machinery (or your body) before they actually occur
  • Optimization—using sensor data and analysis to optimize a process, as when a lumber mill optimizes the automated cutting of a log, or a poultry processor automates the preparation of a chicken, or when is the healthiest time to go to sleep or when in your sleep cycle to wake up
  • Prescription—employing sensor and other types of data to tell the user what to do, as when an activity tracker nudges you to get off the couch or sit up straight
  • Situational awareness—piecing together seemingly disconnected events and relating them to a larger repository of data to put together an explanation, as when a series of readings from activity trackers, glucose monitors, connected scales, and other devices tells you that you are in danger of contracting diabetes

The analytics of things is often a precursor to cognitive action—taking action based on the results of analyzed sensor data. Comparative usage statistics, for example, might motivate an energy consumer to cut back on usage, while smart thermostats can monitor and optimize the household environment. Predictive asset maintenance suggests the best time to service machinery, which is usually much more efficient than servicing at predetermined intervals. A municipal government could analyze traffic data sensors in roads and other sources to determine where to add lanes and how to optimize stoplight timing and other drivers of traffic flow.

Technavio – Global IIoT Sensors Market in Oil and Gas Industry 2018-2022

Market analyst firm Technavio has a new report that provides a comprehensive analysis of the global IIoT sensors market in oil and gas industry by product such as temperature sensors, flow sensors, flow sensors, pressure sensors, and other sensors. The report also provides a comprehensive analysis of the growth opportunities for companies in this market in regions such as the Americas, APAC, and EMEA.

The growing focus of the oil and gas industry on reducing the cost is encouraging them to adopt IIoT sensors as the installation of these sensors takes less time. In addition, the sensor manufacturers are increasingly offering sensors with easy assembling options and technical advancements. Moreover, the rising competition among major manufacturers of sensors and service providers of IoT products is increasing, which in turn, will boost the adoption of these sensors in the oil and gas industry. Research analysis on the global IIoT sensors market in oil and gas industry identifies that the growing commercial acceptance of IIoT sensors will be one of the major factors that will have a positive impact on the growth of the market. Technavio’s market research analysts predict that the market will grow at a CAGR of more than 5% by 2022.

The preference for industrial internet of things enabled smart asset monitoring solutions add intelligence to automated workflows, real-time alerts, dynamic edge control of assets, cross-domain analytics, insights from data, real-time visibility, and predictive maintenance. This is driving the adoption of smart asset monitoring, which in turn, is identified as one of the key trends that will stimulate growth in the IIoT sensors market in oil and gas industry throughout the projected period.