Machine learning has experienced a boost in popularity among industrial companies thanks to the hype surrounding the Internet of Things (IoT). Many companies are already designating IoT as a strategically significant area, while others have kicked off pilot projects to map the potential of IoT in business operations.
As a result, nearly every IT vendor is suddenly announcing IoT platforms and consulting services.
But achieving financial benefits through IoT is not easy. The lack of concrete objectives is disconcerting. The advancement of digitization and IoT places new prerequisites on both buyers and sellers. Many businesses have failed to clearly determine what areas will change with the implementation of an IoT strategy.
In other words, clearly defined, concrete intermediary objectives are missing. For example, industrial companies produce a massive amount of data on a daily basis. However, by and large, companies fail to systematically collect, store, analyze and use such data to improve process efficiency or meet other goals.
Furthermore, not many vendors are able to establish, in concrete terms, to the client how to prudently create positive impact on business operations with IoT solutions. Simply the promise of a cloud-based IoT platform is not enough.